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ABSTRACT

A complex resistive boundary condition is
used to accurately model very thin superconducting
films used in microstrip transmission lines. The
imaginary part of the conductivity is a measure of
the energy stored in the superconductor which
contributes to the slow-wave propagation behavior
of these transmission lines. Numerical solutions
of superconducting microstrip have been obtained
and the dependence of the complex propagation
constant on the microstrip geometry and the
superconducting thin film properties was
investigated.

INTRODUCTION

Transmission  lines using superconducting
films have many possible practical applications in
microwave and millimeter-wave devices and circuits
[1]. Advantages of superconducting transmission

lines include low loss and low dispersion. In
addition, in a superconducting microstrip
configuration where the  superconducting film
thicknesses are small compared to the
superconducting penetration depth (A) the phase
velocity can be very dependent on the
superconducting properties of the strip and ground
plane. The penetration depth is the

characteristic decay length of the magnetic field
into a superconductor. A reduction in the phase
velocity is the result of the kinetic inductance
(Ly) contribution from the energy stored as
kinetic motion of the charge carriers in the
superconductor.

lines, with a
Ly is much larger
(Ly), have been

Microstrip transmission
geometry designed to insure that
than the magnetic inductance
fabricated and found to have very slow phase
velocities [2,3]. Due to the extreme geometry
involved in such structures (the dielectric is a
sputtered thin film less than 1000 &), the
behavior can accurately be predicted by a parallel
plate waveguide model. However, the parallel
plate approximation is inaccurate for more
conventional microstrip geometries associated with
substrate thicknesses on the order a mil thick and
with microstrip widths of approximately the same
dimension.
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Traditional numerical approaches are not
applicable to this situation since the
superconducting films are much thinner than A.

For superconducting film thicknesses (t) much less
than ) the fields can penetrate through the
superconductor [4,5]. To address this case, very
thin superconducting films (t << A) can be modeled
as a complex resistive boundary condition [6].
This paper is an extension of that work, which
presented the analytical and numerical development
and compared these results to earlier experimental
work [2,3]. This paper summarizes the numerical
approach and presents some of the results of a
numerical investigation of the dependence of the
propagation coefficient on several material and
geometric parameters.

NUMERICAL APPROACH

The resistive boundary condition is an
approximate boundary condition in electromagnetic
theory [7]. It has been used to treat thin lossy
dielectric sheets with large conductivities where
the thickness is much less than a wavelength. The
resistance, in Q/square, of the analogous
superconducting sheet of thickness tge is given
by

R = [tsc(dn - jO’se)]—l . (1)
If the two-fluid model [8] is used, then op, which
is related to the losses in the superconducting
film, is the conductivity of the normal electrons
and is given by
(2)

Op = Onc(T/Tc)4 Y

the normal state conductivity just
above the transition temperature (Tc)' The
imaginary part of the conductivity accounts for
the energy stored in the film and is given by

where ope is

oge = [1-(T/T)*1/ Cwporo?) (3)
where Ag is the penetration depth at 0.0 K. The
strong temperature dependence of op and ogc as

T » T should be noted.
Solving the electromagnetic field problem for

such a sheet can be reduced from a problem of
matching fields at two surfaces to matching fields
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at one surface, under the restriction that

A 2> tge, if it is assumed that

lim
tgg;() [O'tsc]-l =R (4)
The numerical formulation is an extension of the
approach used for perfectly conducting microstrip
using a full-wave approach [9]. The current
components on the strip (JX and Jy) for the
geometry shown in Fig. 1 give rise to a set of

coupled integral equations, which in the Fourier

transform domain are

Zyy(C)Jy(C) + Zyz(C)Jz(C) =

RIy(2) + Eg®(2) (5)
and
Zzy(C)Jy(C) + ZZZ(C)JZ(C) =
RI,(C) + Ez°(C) (6)
where Zyys Zyzs Zzy and Z,, are transformed
impedance Green's function elements which are
determined wusing the spectral domain immitance

approach [10].

E,®(y) and Eye(y) are the electric
field components

in the plane of but external to
the strip. The ~ above the quantity denotes the
Fourier transform of that quantity and £ is the
transform variable of the y dimension of Fig. 1.
In the perfectly conducting case (R = 0) (5) and
(6) are exactly equivalent to previously published
approaches for a strip with a perfectly conducting
boundary condition [9,10]. Thus, by modifying two
of the transformed impedance Green's function
elements by subtracting R, problems of interest
can be solved using established numerical
techniques. The currents are expanded in a set of
basis functions. A Galerkin approach [11] is used
to construct a determinantal equation for the
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Figure 1. Geometry of
numerically implemented. A strip with a resistive
boundary condition, Rj;, 1is separated from a
perfectly conducting ground plane by a dielectric,
g9, of thickness d/2.

the problem which was
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unknown propagation constant, a.
code is a modified wversion of the
from Ref. 12.

The computer
computer code

RESULTS

The application of the resistive boundary
condition to model transmission lines consisting
of thin superconducting films using this numerical
technique was shown [6] to accurately determine
the propagation constant of these structures.
Fig. 2 summarizes those results by comparing the
experimental, analytical (parallel plate), and
numerical values which can be seen to be in very
good agreement. The values presented are for the
normalized propagation coefficient of the dominant
mode, a', which is given by

a' = a/lwlpoeg) /2] . €]
Thus the Re(a') represents the slowing factor
compared to an equivalent perfectly conducting
suspended stripline with a substrate having a
dielectric constant of gq. The experimental

results were obtained from microstrip 1line which
was fabricated from a 150 A niobium nitride ground
plane, a 400 A silicon dielectric, and a 140 &
thick niobium nitride strip which is 25 um wide
[2,3]. The parameters of the superconducting
films of this line were found to be [3];
Ao = 320 nm and T, = 12.15 K. The analytical and
numerical results presented in Fig. 2 were
obtained by modeling the experimental geometry.
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Figure 2. A comparison of the experimental
( o), numerical ( e ) and analytical ( )
results as a function of temperature is shown for
geometries which most closely approximate the

experimental case.

Even when the dielectric is on the order of a
mil thick the propagation constant can still be
dependent on the energy stored in the



superconducting film. The dependence of a' on
frequency is shown in Fig. 3 for two 25 pm wide
strips separated by a 25 um thick substrate with a
relative dielectric constant, e,, of 10.5. The
superconducting film parameters assumed were
Te = 12,15 K, T = 4.0 K, tge = 145 A, Ao = 320 nm,
and g = 0.5x106 (Q-cm)~l,  As expected from the
geometry, since all dimensions are small compared
to a wavelength, Re(a') is, for all practical
purposes, independent of frequency. However, the
superconductor losses, and hence Im(a') are
linearly dependent on frequency in this frequency
band.
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Figure 3. The dependence of Re(a') and Im(a') on
frequency is shown at T = 4.0 K for 25 ym wide
strips separated by a 25 pm substrate with a
relative dielectric constant, ey = 10.5. The
superconducting parameters are Te = 12.15 K,
Gne = 0.5%106 (Q-em)~1, tge = 145 A and g =
320 nm.
The strong functional dependence of the
complex conductivity on temperature as T » T,
given by (2) and (3) yields a very strong
functional dependence of the complex propagation
constant on temperature. For the geometry and
material parameters described in the above
paragraph, Fig. 4 shows the dependence of Re(a')
and Im(a') at 10.0 GHz as a function of
temperature. While the slowing factor increases
by about 50 % over the temperature range from
2.0 K to 11.0 K, Im(a'), which represents the loss
due to the normal electrons, increases by over
three orders of magnitude. The value of Re(a')
for the perfectly conducting case is about 2.73
for the same geometry. The difference between the
Re(a') in these two cases 1is due to the kinetic
energy stored in the superconducting film which
for this geometry 1s on the same order of
magnitude as the magnetic energy stored in the
dielectrica. The dependence of Re(a'), at 10 GHz
for a 25 pm wide suspended stripline, on the
dielectric substrate thickness is shown in Fig. 5
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Figure 4. The dependence of Re(a') and Im(a') at
10.0 GHz on temperature is shown for two 25 um
wide strips separated by a 25 pym thick substrate
with a relative dielectric constant, ey, of 10.5.
The superconducting parameters are the same as
Fig. 3.
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Figure 5. The dependence of Re(a') at 10.0 GHz
on substrate thickness is shown at several
different temperatures for 25 pm wide strips. The
relative dielectric constant, er, is 10.5. The
superconducting film parameters are the same as

Fig. 3.



Fig. 5 at several different temperatures. The
superconducting film parameters are the same as
mentioned previously. As the substrate thickness
decreases the percentage of enmergy stored in the
superconducting films increases and hence the
slowing factor increases.

CONCLUSIONS

The previous cases demonstrate some of the
interesting and wunusual properties that can be
achieved by using very thin superconducting films
in transmission line structures. With the
discovery of new superconducting materials with
transition temperatures above liquid nitrogen
temperature there is 1likely to be much future
interest in exploiting these materials for
microwave applications, particularly transmission
lines, The storage of energy in superconducting
thin film transmission lines can be a major
consideration when designing compact microwave
circuits.
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