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ABSTRACT

A complex resistive boundary condition is
used to accurately model very thin superconducting

films used in microstrip transmission lines. The
imaginary part of the conductivity is a measure of

the energy stored in the superconductor which

contributes to the slow–wave propagation behavior
of these transmission lines. Numerical solutions
of superconducting microstrip have been obtained

and the dependence of the complex propagation

constant on the microstrip geometry and the
superconducting thin film properties was
investigated.

INTRODUCTION

Transmission lines using superconducting

films have many possible practical applications in

microwave and millimeter-wave devices and circuits

[1]. Advantages of superconducting transmission

lines include low loss and low dispersion. In
addition, in a superconducting microstrip

configuration where the superconducting film
thicknesses are small compared the
superconducting penetration depth (1) ti~ phase
velocity can be very dependent on the

superconducting properties of the strip and ground
plane. The penetration depth is the

characteristic decay length of the magnetic field
into a superconductor. A reduction in the phase

velocity is the result of the kinetic inductance

(Lk) contribution from the energy stored as

kinetic motion of the charge carriers in the

superconductor.

Microstrip transmission lines, with a
geometry designed to insure that Lk is much larger

than the magnetic inductance (Lm) , have been
fabricated and found to have very slow phase

velocities [2,3]. Due to the extreme geometry
involved in such structures (the dielectric is a

sputtered thin film less than 1000 A), the

behavior can accurately be predicted by a parallel

plate waveguide model. However, the parallel

plate approximation is inaccurate for more

conventional microstrip geometries aaaociated with

substrate thicknesses on the order a mil thick and

with microstrip widths of approximately the same
dimension.
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Traditional numerical approaches are not
applicable to this situation since the
superconducting films are much thinner than k.
For superconducting film thicknesses (t) much less

than h the fields can penetrate through the

superconductor [4, 5]. To address this case, very
thin superconducting films (t f:< k) can be modeled

as a complex resistive boundary condition

that work, w[~~~This paper is an extension of h“

preaented the analytical and numerical development

and compared these results to earlier experimental

work [2,3]. This paper summarizes the numerical
approach and presents some of the results of a

numerical investigation of the dependence of the

propagation coefficient on several material and
geometric parameters.

NUMERICAL APPROACH

The resistive boundary condition is an

approximate boundary condition in electromagnetic

theory [7]. It has been used to treat thin Ioaay

dielectric sheets with large conductivities where
the thickness is much less than a wavelength. The

resistance, in Q/square, of the analogous

superconducting sheet of thiclcness tsc is given
by

R = [tsc(on - josc)]-l . (1)

If the two-fluid model [8] is used, then on, which
is related to the losses in the superconducting

film, is the conductivity of the normal electrons
and is given by

on = ~nc(T/Tc)4 , (2)

where Onc is the normal state conductivity just
above the transition temperature (Tc). The

imaginary part of the conductivity accounta for

the energy stored in the film and is given by

6s c = [1-(T/Tc)4]/(LJWOA02) , (3)

where 10 is the penetration depth at 0.0 K. The

atrong temperature dependence of Cn and osc as
T + Tc should be noted.

Solving the electromagnetic field problem for
such a sheet can be reduced from a problem of
matching fields at two surfaces to matching fields
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at one surface, under
L>>t SC) ‘f it iS assI.nIled

t:::O [@Se]-l = R
@m

The numerical formulation

the restriction that
that

(4)

is an extension of the

approach used for perfectly conducting microstrip
using a full-wave approach [9]. The current
components on the strip (Jx and Jy) for the
geometry shown in Fig. 1 give rise to a set of

coupled integral equations, which in the Fourier

transform domain are

and

ZYY(L)JY(C) + ZyZ(~)JZ(~) =

dy(c) + Eye(c) (5)

Zzy(~)Jy(~) + Zzz(c)Jz(C) =

R:Z(C) + Eze(C) (6)

where
ZYY ‘ Zyz , ZZY and Zzz are transformed

impedance Green’s function elements which are
determined using the spectral domain immitance

approach [10]. Eze(y) and Eye(y) are the electric

field components in the plane of but external to

the strip. The “ above the quantity denotes the

Fourier transform of that quantity and c is the

transform variable of the y dimension of Fig. 1.

In the perfectly conducting case (R = O) (5) and

(6) are exactly equivalent to previously published
approaches for a strip with a perfectly conducting
boundary condition [9,10]. l%us, by modifying two
of the transformed impedance Green’s function
elements by subtracting R, problems of interest
can be solved using established numerical

techniques. The currents are expanded in a set of

basis functions. A Galerkin approach [11] is used

to construct a determinantal equation for the

c1
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Figure 1. Geometry of the problem which was
numerically implemented. A strip with a resistive
boundary condition, RI, is separated from a
perfectly conducting ground plane by a dielectric,

=2, of thickness d/2.

unknown propagation constant, a.
code is a modified version of the
from Ref. 12.

RESULTS

The computer
computer code

The application of the resistive boundary

condition to model transmission lines consisting

of thin superconducting films using this numerical

technique was shown [6] to accurately determine
the propagation constant of these structures.

Fig. 2 summarizes those results by comparing the
experimental, analytical (parallel plate) , and

numerical values which can be seen to be in very

good agreement. The values presented are for the

normalized propagation coefficient of the dominant

mode, a’, which is given by

af = a/[dpOeO)l/21 . (7)

Thus the Re(a’) represents the slowing factor

compared to an equivalent perfectly conducting

suspended stripline with a substrate having a

dielectric constant of CO* The experimental

results were obtained from-microstrip line which
was fabricated from a 150 8 niobium nitride ground

plane, a 400 A silicon dielectric, and a 140 A
thick niobium nitride strip which is 25 pm wide

[2,3]. The parameters of the superconducting

films of this line were found to be [3];

LO = 320 nm and Tc = 12.15 K. The analytical and

numerical results presented in Fig. 2 were

obtained by modeling the experimental geometry.
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Figure 2. A comparison of the
(o),

experimental
numerical ( ● ) and analytical ( —)

results as a function of temperature is shown for
geometries which most closely approximate the
experimental case.

Even when the dielectric is on the order of a
mi 1 thick the propagation constant can still be

dependent on the energy stored in the
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superconducting film. The dependence of a’ on
frequency is shown in Fig. 3 for two 25 pm wide

strips separated by a 25 pm thick substrate with a

relative dielectric COnStSnt, Er, of 10.5. The
superconducting film parameters assumed were
Tc = 12.15 K, T = 4.0 K, t~c = 145 A, 10 = 320 nm,
and anc = o.5x1o6 (~-cm)-l. As expected from the
geometry, since all dimensions are small compared
to a wavelength, Re(a’) is, for all practical
purposes, independent of frequency. However, the
superconductor leases, and hence Im(a’) are
linearly dependent on frequency in this frequency
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Figure 3. The dependence of Re(a’) and Im(a’) on
frequency is shown at T = 4.0 K for 25 pm wide
strips separated by a 25 ~m substrate with a
relative dielectric constant, Sr = 10.5. The

superconducting parameters are Tc = 12.15 K,

O’nc = 0.5xI06 (~-cm)-1, tsc = 145 A and Xo =
320 nm.

The strong functional dependence of the
complex conductivity on temperature as T+TC
given by (2) and (3) yields a very strong
functional dependence of the complex propagation
constant on temperature. For the geometry and
material parameters described in the above

paragraph, Fig. 4 shows the dependence of Re(a’)
and Im(a’) at 10.0 GHz as a function of

temperature. While the slowing factor increases

by about 50 % over the temperature range from

2.0 K to 11.0 K, Im(a’), which representa the loss
due to the normal electrons, increases by over

three orders of magnitude. The value of Re(a’)
for the perfectly conducting case is about 2.73
for the same geometry. The difference between the

Re(a’) in these two cases is due to the kinetic

energy stored in the superconducting film which

for this geometry is on the same order of
magnitude as the magnetic energy stored in the
dielectric. The dependence of Ke(a’), at 10 GHz

for a 25 pm wide suspended stripline, on the

dielectric substrate thickness is shown in Fig. 5
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Figure 4. The dependence of Re(a’) and Im(a’) at
10.0 GHz on temperature is shown for two 25 ~m

wide strips separated by a 25 p,m thick substrate

with a relative dielectric constant, Er, of 10.5.
The superconducting parameters are the same as

Fig. 3.
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Figure 5. The dependence of Re(a’)

on substrate thickness is s hewn

different temperatures for 25 pm wide
relative dielectric constant, cr, is

superconducting film parameters are the ssme as

Fig. 3.

at 10.0 GHz

at several

strips. The
10.5. The
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Fig. 5 at several different temperatures. The
superconducting film parameters are the same as
mentioned previously. Aa the substrate thickness
decreases the percentage of energy stored in the
superconducting films increases and hence the
slowing factor increases.

CONCLUSIONS

The previous csses demonstrate some of the
interesting and unusual properties that can be
achieved by using very thin superconducting films
in transmission line structures. With the
discovery of new superconducting materials with
transition temperatures above liquid nitrogen
temperature there is likely to be much future
interest in exploiting these materials for
microwave applications, particularly transmission
lines. The storage of energy in superconducting
thin film transmission lines can be a major
consideration when designing compact microwave
circuits.
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